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Abstract
In this work, stirred yogurt variations in which milk-fat was replaced by a complex coacervate (CC) made up by whey
protein isolate/Lactobacillus plantarum (Lp)/ κ-carrageenan, and sucrose by stevia were prepared. Microstructure, rheology
and sensory attributes of the yogurt variations were examined. Sucrose substitution (6 wt%) by stevia (0.02 wt%) in full-
fat yogurt (2.6 wt%) and reduced-fat yogurt (1.3 wt%) produced more compact gel networks in which the presence of
non-micellar material was observed between casein clusters. Viscoelastic moduli of the yogurt variations containing stevia
were significantly higher than those of the yogurt variations containing sucrose. Incorporation of CC (1.3, 2.6 and 3.9
wt%) produced reduced-fat yogurt variations exhibiting a progressively more compact protein network, higher viscoelastic
moduli and preference sensory scores comparable to those displayed by the full-fat yogurt made with sucrose. Yogurt
variations incorporating CC exhibited high probiotic survivability (> 8.1 log cfu g−1) after 21 days of storage.
Keywords: yogurt, complex coacervate, stevia, sucrose, L. plantarum survivability, rheology, microstructure.

Resumen
En este trabajo se elaboraron yogures batidos en los cuales la grasa láctea se sustituyó por un coacervado complejo (CC) de
aislado de proteı́na de lactosuero/Lactobacillus plantarum (Lp)/κ-carragenina y la sacarosa por stevia. La microestructura,
reologı́a y atributos sensoriales de los yogures fueron evaluados. La sustitución de sacarosa (6 % p/p) por stevia (0.02 %
p/p) en yogures completo (2.6 % p/p) y reducido (1.3 % p/p) en grasa produjo matrices geladas más compactas en donde
se observó la presencia de material no micelar entre los agregados de caseı́na. Los módulos viscoelásticos de los yogures
conteniendo stevia fueron significativamente mayores que aquellos de los yogures conteniendo sacarosa. La incorporación
de CC (1.3, 2.6 y 3.9 % p/p) al yogurt reducido en grasa originó redes proteı́nicas progresivamente más cerradas, que
mostraron módulos viscoelásticos mayores y preferencia sensorial comparable a la del yogurt completo en grasa elaborado
con sacarosa. Los yogures adicionados con CC presentaron una supervivencia de L. plantarum elevada (> 8.1 log cfu g−1)
después de 21 dı́as de almacenamiento.
Palabras clave: yogurt, coacervado complejo, stevia, sacarosa, supervivencia de L. plantarum, reologı́a, microestructura.
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1 Introduction

The demand for functional food products in which
sucrose and milk-fat have been substituted by non-
caloric sweeteners and fat replacers, and/or added
with probiotics are on the rise (Basu et al., 2013;
Lazaridou et al., 2014). On one hand, the energetic
value of sucrose is considered undesirable so there
is a growing interest in the food industry to use
low calorie alternatives. However, the selection of
an appropriate substitute is no simple matter, as
sucrose provides good flavour and consistency to food
products (Nip, 2007). Recently, stevia from Stevia
rebaudiana has received increased attention for its
natural origin and sweetening qualities (Basu et al.,
2013). On the other hand, the consumption of large
amounts of saturated fats in the diet is considered as
a risk factor for heart disease (Lobato-Calleros et al.,
2006). Notwithstanding, fat reduction in yogurt alters
its mechanical and sensory characteristics as milk-fat
globules serve as anchor points that promote protein
cross-linking (Aguirre-Mandujano et al., 2009). The
multi billion global yogurt market is a dynamic
category marked by constant innovation driven by
growing consumer desire for convenient and health
promoting products (Research and Markets, 2015).
The health benefits of yogurt can be increased by the
incorporation of probiotics that contribute to improve
the digestive health (Lazaridou et al, 2014). In spite of
this, free probiotic bacteria have poor survivability in
yogurt as they are liable to acid and/or aerated media
(Muthukumarasamy et al., 2006). A common method
used in the food industry for providing probiotic
living cells with an increased tolerance to hostile
environments, is to retain them within a biopolymer
matrix acting as a physical barrier against diffusion
of adverse factors (Gerez et al., 2012). Recently,
complex coacervation has been proposed as alternative
technique for microencapsulating microorganisms
(Bosnea et al., 2014). The attractive interaction
between oppositely charged biopolymers leads to
the formation of soluble or insoluble complexes.
A characteristic of the latter, known as complex
coarcevates, is that they display superior viscoelastic
properties than the individual biopolymers from which
they are derived (Espinosa-Andrews et al., 2008).
Likewise, complex coacervates have been attributed
as possessing fat-mimicking functionality (Ramı́rez-
Santiago et al., 2012). Hernández-Rodrı́guez et
al. (2014) reported that survivability of the
probiotic bacteria L. plantarum (Collado et al., 2008)
was significantly increased when the cells were

electrostatically bound to a whey protein isolate/κ-
carrageenan complex coacervate, as compared to that
of free cells after exposure to low pH and bile salts.

The objective of this work was to evaluate
the effects of partially replacing milk-fat by
whey protein isolate/L. plantarum/κ-carrageenan
complex coacervate and/or sucrose by stevia on the
microstructure, rheology, and sensory preference
properties, and L. plantarum survivability of yogurt.

2 Materials and methods

2.1 Materials

The biopolymers used for the formation of the
complex coacervate were whey protein isolate
(WP; Hilmar TM 9400, 93 wt% protein, Hilmar
Ingredients, Hilmar, CA, USA) and κ-carrageenan
(KC; Grinstead® Carrageenan CH 407, Danisco
Mexico, S.A. de C.V., Mexico City, Mexico). Low
heat skim milk (SMP; Lactomix®, DILAC, S.A.
de C.V., Mexico City, Mexico) and homogenized
whole milk (WMP; NIDO®, Nestle, S.A. de C.V.,
Mexico City, Mexico) spray-dried powders were
used to prepare the yogurt variations. Stevia or
stevioside (st; 91% purity, without any carrier agents
added) was used as non-caloric sweetener (Naturita
Farma LDTA, Asuncion, Paraguay). Ciprofloxacin
(Bayer Schering Pharma, Mexico City, Mexico)
was used for differential selective growth of L.
plantarum (Bujalance et al., 2006). Analytical
grade hydrochloric acid (HCl) was purchased from
J.T. Baker (Naucalpan, State of Mexico, Mexico).
Rogosa Sharp (MRS) lactobacillus broth and agar
were obtained from Becton Dickinson de Mexico,
S.A. de C.V. (Mexico City, Mexico). Sucrose (su;
table sugar) was purchased from a local supermarket
in Mexico City. All the water used was double distilled
and deionized (DDW).

2.2 Cell culture

Freeze-dried L. plantarum Lp-115 ATCC:SD5209
(Lp; Danisco, Braband, Denmark) was cultured for
18 h at 37 ºC (1% w/v) in sterile MRS broth under
anaerobiosis (González-Olivares et al., 2016). The
culture of Lp was sub-cultured at 37 °C for 18 h twice
in sterile MRS broth using l% (w/v) of inoculums
for activation and adaptation. Cells were harvested
in the late logarithmic growth phase (22 h) with the
help of a minispin plus Eppendorf centrifuge (Type
22331, Eppendorf AG, Hamburg, Germany) operated
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at 15800 × g for 10 min. The supernatant was decanted
and the cells were suspended in 1 mL of physiological
solution, obtaining a cell suspension containing 9.5
± 0.1 log cfu mL−1. Cell suspension was used for
bacteria entrapment in the complex coacervate or as
free cells in yogurt.

2.3 Complex coacervate formation

In a previous work by some of the authors of this
research (Hernández-Rodrı́guez et al., 2014), it was
found that complex coacervates made with a 16.7:1
WP-KC weight ratio at pH values below the isoelectric
point of WP (pH ∼ 4.5) showed great microstructural
integrity, high viscoelastic moduli values and endowed
L. plantarum cells with a survivability of 75.78% after
sequential exposure to simulated gastric juice (pH 3.0,
37 ºC, 30 min) and bile salts (37 ºC, 30 min). Free
cells survivability exposed to the same gastrointestinal
conditions was 0.01%. Thus, the WP/Lp/KC complex
coacervate was formed as indicated by Hernández-
Rodrı́guez et al. (2014), with slight modifications.
Briefly, WP (30 g, 5% w/v, pH 4.0, zeta potential
= 3.87 ± 0.03 mV) was added with Lp cell (9.5 ±
0.1 log cfu mL−1; zeta potential = -1.81 ± 0.18 mV)
suspension, yielding a WP/Lp soluble complex (zeta
potential = 1.53 ± 0.06 mV). Afterwards KC (9 g,
1% w/v, pH 4.0, zeta potential -30.2 ± 2.11 mV) was
added using constant mild stirring (150 rpm, room
temperature, 2 h). The mixture was kept at 4 ºC
for 48 h (zeta potential = - 3.76 ± 0.04 mV), and
afterwards centrifuged at 1350 rpm for 30 min to
induce complete CC precipitation. The change in zeta
potential values of the mixtures clearly indicated that

electrostatic interactions were the driving force for the
Wp/Lp/KC complex coacervate formation.

CC structure was observed by scanning electron
microscopy as described below. CC had a moisture
content of 85.2 ± 1.6 wt%, and a protein content
of 11.6 ± 0.3 wt% (78.2 ± 1.2 wt% d.b.). The
mean volume diameter of CC was determined
by dynamic light scattering measurements with a
Zetasizer Nano ZS (Malvern Instruments, Ltd.,
Malvern, Worcestershire, UK) (Hernández-Rodrı́guez
et al., 2014).

2.4 Preparation of yogurt variations

Seven stirred yogurt variations were prepared in
accordance to formulations given in Table 1. Two full-
fat (2.6 wt% milk-fat) yogurts and two reduced-fat (1.3
wt% milk-fat) yogurts were made using as sweetener
either sucrose or stevia, and coded as FFYsu, FFYst,
RFYsu and RFYst, respectively. Additionally three
reduced-fat yogurts were manufactured with stevia
and in which milk-fat was partially replaced by CC
in 1:1, 1:2 and 1:3 weight ratios, and were coded
as RFYst1:1, RFYst1:2 and RFYst1:3, respectively.
The substitution of sucrose was done on the basis
of relative sweetening index value of stevia (300)
provided by the manufacturer. Milk-fat and total
milk solids contents (Table 1) of the different yogurt
variations were obtained by blending WMP and SMP,
and ten-liter batches of reconstituted milk were used
to manufacture each one of the yogurt variations in
triplicate using a completely randomized experimental
design.

Table 1. Yogurt variations formulations
Table 1. Yogurt variations formulations 
 

Yogurt 
variation 

code 

Milk-fat 
(g 100 g-1) 

Total milk 
solids 

(g 100 g-1) 

Complex 
coacervate 

d.b. 
(g 100 g-1) 

Sucrose 
(g 100 g-1) 

Stevia 
(g 100 g-1) 

FFYs 2.6± 0.2 12.0 ± 0.1 - 6.0 - 
FFYsu 2.6± 0.2 12.0 ± 0.1 - - 0.02 
RFYs 1.3 ± 0.2 12.0 ± 0.1 - 6.0 - 
RFYsu 1.3 ± 0.2 12.0 ± 0.1 - - 0.02 
RFYst1:1 1.3 ± 0.2 10.7 ± 0.1 1.3 - 0.02 
RFYst1:2 1.3 ± 0.2 9.4 ± 0.1 2.6 - 0.02 
RFYst1:3 1.3 ± 0.2 8.1 ± 0.1 3.9 - 0.02 
FFY: full-fat yogurt variations; RFY: reduced-fat yogurt variations. Subindexes su = sucrose; st = 
stevia; 1:1, 1:2 and 1:3 = weight ratios of milk-fat to CC in dry basis (d.b.). 

www.rmiq.org 79



Hernández-Rodrı́guez et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 16, No. 1 (2017) 77-89

Batches were refrigerated at 4 ºC for 24 h to
allow full hydration of powders, heated to 40 ± 1
ºC, added with the corresponding sweetening agent,
pasteurized (85 ± 1 ºC, 15 min), cooled (45 ± 1 ºC)
and inoculated with 0.003% w/v of freeze-dried starter
culture (Streptococcus thermophilus, Lactobacillus
bulgaricus and Lactobacillus lactis, CHOOZIT MY
800 LYO, Danisco France SAS, Dangé Saint Romain,
France). Milk fermentation process was carried out
at 45 ± 1 °C until an acidity of 80-85 °D was reached,
determined by titration (AOAC, 1995). Afterwards the
fermented milk batches were cooled and stored at 4 ±
1 °C during 24 h, and the milk gels were removed from
refrigeration. At this point, FFYsu, FFYst, RFYsu,
and RFYst were added with free Lp cells, while
RFYst1:1, RFYst1:2, and RFYst1:3 were incorporated
with CC containing the entrapped Lp cells as indicated
in Table 1. All the yogurt variations were gently
stirred with help of a mechanical mixer (Caframo,
RZR1, Cole-Parmer, Vernon Hills, IL, USA) at 500
rpm during 1 min, and stored at 4 ± 1 °C until required
for characterization.

2.5 Chemical composition

Yogurt variations after three days of storage were
analysed for protein by the Kjeldahl method, fat by
Gerber method and moisture by oven drying (AOAC,
1995). pH and acidity of the yogurt variations were
determined after 3 and 21 days of storage using a
Vernier pH-BTA (Beaverton, OR, USA) and titration
(AOAC, 1995), respectively.

2.6 Syneresis

After 3 and 21 days of storage, yogurt variations (14
g) were placed in tubes and centrifuged at 222 × g for
10 min, at 4 ± 1 ºC. The clear supernatant was poured
off, weighed and expressed as percent weight relative
to original weight of yogurt (Keogh and O´ Kennedy,
1998).

2.7 Survivability of L. plantarum

One hundred g of each yogurt variation were placed
into sterile glass bottles. The samples were stored
at 4 °C, and the viability of Lp cells was determined
during 21 days, at intervals of 7 days. One g of
yogurt was placed in phosphate buffer (0.1M, pH 7.2,
2 h) to release the bound cells of Lp and cultured in
MRS agar (37 °C, 48 h) added with 0.002 % w/v

of ciprofloxacin (Bujalance et al., 2006; Sandoval-
Castilla et al., 2010), and enumerated.

2.8 Rheology

Dynamic oscillatory measurements of the yogurt
variations were carried out using a Physica MCR
301 rheometer (Anton Paar, Messtechnik, Stuttgart,
Germany), with a cone-plate geometry, in which the
rotating cone was 50 mm in diameter, and cone angle
of 1° with a gap of 0.05 mm. About 3.8 mL of sample
was carefully placed in the measuring system, and left
to rest for 10 min for structure recovery. Amplitude
sweeps were carried out to characterize the linear
viscoelastic region (LVR) of the yogurt variations by
applying a strain sweep ranging from 0.01 to 100%
at 1 Hz. Frequency sweep test was carried out
by performing a frequency ramp from 0.1 to 100
Hz (in log progression with 10 points per decade)
at constant strain amplitude of 0.1% (predetermined
from amplitude sweep at 1 Hz, within LVR). All
the experiments were carried out at 4 °C and the
temperature maintenance was achieved with Physica
TEK 150P temperature control and measuring system.
The storage (G´) and the loss (G´´) moduli were
obtained from the equipment software (RheoPlus/32
V2.62) in all cases. Analysis was performed on each
yogurt variations aged 3 days.

2.9 Microstructure

Microstructure of the CC and that of the yogurt
variations was examined with a high vacuum
scanning electron microscope Jeol JSM-035 (Jeol
Ltd., Akishima, Japan) at 20 kV at different
magnifications. The samples were prepared as
indicated by Ramı́rez-Santiago et al. (2010).

2.10 Sensory evaluation

The yogurt variations aged seven days were evaluated
by untrained panelists made up by 50 males and 30
females, aged between 16 and 18 years old, who were
regular yogurt consumers. Each of the seven yogurt
variations were placed into 20 mL plastic glasses,
coded with three-digit random numbers, and randomly
presented to the panelists, who were asked to score
their preference for appearance, aroma, creaminess,
acidity, granularity, flavour, residual flavour, and
overall acceptability. Consumers’ yogurt preference
was scored on a five-point hedonic scale (1=dislike
very much; 2=dislike moderately; 3=neither like nor
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dislike; 4=like moderately; 5=like very much) (Choi,
2014).

2.11 Statistical analysis

Analyses were carried out in triplicates from
3 independent experiments carried out using a
randomized experimental design. Analysis of variance
(ANOVA) and Tukey’s test (p ≤ 0.05) were performed
on probiotic counts, chemical, syneresis, rheological
and sensory data of yogurt variations using the
Statgraphics 7 statistical analysis system (Statistical
Graphics Corp. Manugistics Inc., Cambridge, MA,
USA).

3 Results and discussion

3.1 Chemical composition

Table 2 shows the average composition of the yogurt
variations. Protein content was significantly higher
for all the RFY than for the FFY variations, but the
opposite was observed regarding fat contents. As
milk-fat:CC weight ratios increased (1:1, 1:2, and
1:3) protein contents in RFY variations increased
significantly, due to the protein contribution of CC
to the yogurt. Moisture content of yogurt variations
containing stevia was significantly higher than that of
yogurt variations made with sucrose, as the former had
lower soluble solids contents (Table 1). Acidity was
non-significantly different between yogurt variations

aged 3 days, but increased significantly after 21
days of storage. RFY variations containing CC
exhibited significantly higher acidity, probably due
to the presence of the entrapped probiotic bacteria.
Post-acidification during storage time can be attributed
to the progressive transformation of lactose into
lactic acid (Ramı́rez-Santiago et al., 2010). On the
other hand, at day 3 yogurt variations showed non-
significant differences in pH (4.42-4.43), but after 21
days of storage pH decreased significantly (4.01-4.22).

3.2 Syneresis

Whey separation is a major defect that may lead
to consumer rejection of yogurt (Gonçalves et al.,
2005). Although the phenomena occurring during
syneresis are not fully understood, it is agreed
that increased syneresis with storage time is usually
associated with severe casein network rearrangements
that promote whey expulsion (van Vliet et al.,
1997). Conventionally, yogurt syneresis reduction
or prevention is achieved by fortifying the protein
network with dry dairy ingredients such as skim milk
powder, whey protein isolate/concentrate, sodium
caseinate or calcium caseinate (Amatayakul et al.,
2006); or stabilizers such as gelatine, starch and
different gums having high water binding capacity
(Keogh and O’Kennedy, 1998). It is known that
sucrose contributes to moisture retention in gels
(Torres et al., 2013). In this work, syneresis of the
3 days aged yogurt variations after centrifugation at 4
ºC ranged from 5.3 to 7.5 wt% (Table 2).

Table 2. Chemical composition of yogurt variations (mean ± SD, n = 9)
Table 2. Chemical composition of the yogurt variations (mean ± SD, n = 9) 

Yogurt 
code 

Moisture 
(wt%) 

Fat 
(wt%) 

Protein 
(wt%) 

Syneresis 
3 days 
(wt%)  

Syneresis 
21 days 
(wt%)  

Acidity 
3 days 
(ºD) 

Acidity 
21 days 

(ºD) 
FFYsu 83.2 ± 0.4a 2.6 ± 0.1b 2.9 ± 0.0a 5.8 ± 0.1abc 7.6 ± 0.3ab 84.6 ± 0.7a 90.9 ± 0.4a 

FFYst 88.3 ± 0.5b 2.6 ± 0.1b 2.8 ± 0.1a 5.3 ± 0.3a 7.1 ± 0.1a 85.4 ± 0.5a 91.7 ± 0.8a 

RFYsu 82.7 ± 0.3ª 1.3 ± 0.0a 3.1 ± 0.1b 6.2 ± 0.2bc 13.3 ± 0.6d 84.2 ± 0.7a 93.1 ± 0.3a 

RFYst 88.9 ± 0.6b 1.3 ± 0.0a 3.2 ± 0.1b 7.5± 0.5d 14.6 ± 0.4e 83.9 ± 1.0a 93.3 ± 0.2a  

RFYst1:1 88.7 ± 0.3b 1.3 ± 0.1a 3.7 ± 0.0c 5.6 ± 0.6ab 7.5 ± 0.4ab 85.5 ± 0.6a 95.5 ± 0.6b 

RFYst1:2 88.5 ± 0.5b 1.3 ± 0.1a 4.4 ± 0.0d 6.7 ± 0.3c 8.5 ± 0.5bc 85.3 ± 0.6a 104.5 ± 0.5c 

RFYst1:3 88.3 ± 0.6b 1.3 ± 0.0a 5.0 ± 0.0e 7.1± 0.3d 9.2 ± 0.4c 85.8 ± 0.6a 114.6 ± 0.6d 

FFY: full-fat yogurt variations; RFY: reduced-fat yogurt variations; su = sucrose; st = stevia; 1:1, 
1:2 and 1:3 = weight ratios of milk-fat to CC in dry basis. a-eDifferent superscripts within the 
same column indicate that means differ significantly (p ≤ 0.05). 
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FFYsu, FFYst and RFYst1:1 yogurt variations
displayed lowest syneresis after 3 and 21 days
of storage. The rest of RFY variations showed
significantly higher syneresis at all aging times.
Higher water immobilization took place in FFYsu
and FFYst, probably due to more numerous milk-
fat globules acting as cross-linking protein agents
(Lucey et al., 1998). The CC particles present in
RFYst1:1 contributed to a water holding capacity
similar to that of FFY variations. Further increases
of CC in RFYst1:2 and RFYst1:3 resulted in an
increased syneresis. It is known that when strong
polyelectrolytes near the isoelectric point of protein
associate themselves through strong intermolecular
attractive forces, the resulting assemblies have lower
hydration capacity than the individual biopolymers
making them up (Laneuville et al., 2000).

3.3 Microstructure

Differences in microstructure such as association
of casein micelles and porosity were qualitatively
inferred from SEM micrographs. During samples
preparation for SEM analysis, fat and water (whey) are
removed, producing interstitial spaces between casein
aggregates and minute pores in the protein structure,
respectively. Thus, only the protein matrix and
bacteria are visualized (Kaláb, 1993; Lee and Lucey,
2010). The SEM micrographs of the different yogurt
variations are shown in Figures 1 and 2. It can be seen
that substitution of sucrose by stevia and substitution
of milk-fat by CC, influenced the microstructure
of yogurt variations. Comparison of micrographs
suggested that the microstructures of FFYsu (Fig. 1a)
and RFYsu (Fig. 1b) were different. FFYsu showed a
protein matrix with relatively low porosity, composed
by casein micelles forming associated clusters; while
RFYsu exhibited a protein matrix with increased
porosity formed by smaller clusters of proteins. These
results are in accordance with those of Buchheim
and Dejmek (1997) who found that milk-fat globules
contributed to yogurt network structuring by acting
as cross-linking protein agents. FFYst (Fig. 1c) and
RFYst (Fig. 1d) containing stevia exhibited matrices
characterized by large, fused casein micelles clusters
with comparatively lower porosity than FFYsu (Fig.
1a) and RFYsu (Fig. 1b). The presence of non-
micellar material between casein clusters can also be
observed in Figs. 1e and 1f. This non-micellar
material appears to link the casein micelles together.
Haque and Aryana (2002) informed that the type of

sweetener affects the state of association of casein
micelles in yogurt. Wan et al. (2014) reported that
steviosides formed a complex with soy protein isolate,
mainly through hydrophobic interactions. Ayachi et
al. (2013) using different molecular modeling tools
reported that stevioside and rebaudioside A contained
in stevia extract could bind to the protein dipeptidyl
peptidase-4 (DPP-4). Thus it can be hypothesized that
stevia interacted with milk proteins. Increasing CC
resulted in more aggregated casein micelles clusters
with lower porosity (Figs. 2a-2c) than those observed
in RFYst (Fig. 1d). Aziznia et al. (2008) reported that
addition of whey protein to nonfat yogurt increased
the diameter of protein particles by saturating all the
binding sites of κ-casein, leading to the formation
of additional whey protein aggregates. Fig. 3
shows a micrograph of CC, characterized by spherical
microparticles aggregates forming an interconnected
matrix, where embedded Lp cells can be observed.
The mean volume diameter of the CC particles was
of 231.7 ± 7.2 nm. Morris et al. (2000) reported that
casein micelles were 100-250 nm in diameter, so that
CC diameter falls within this range. Tamime et al.
(1995) reported that fat replacer Simplesse 100 (made
up by denatured whey protein microparticles) had a
diameter ranging between 0.1-0.3 µm, and became
an integral part of yogurt microstructure. Kaláb
(1993) found that casein micelles aggregates were
linked to whey protein through disulphide bridges.
Patel and Velikov (2011) mentioned that the matrix of
food products incorporating biopolymers, were mainly
structured through non-covalent binding including
hydrophobic interactions and hydrogen bonding.

3.4 Rheology

Yogurt is a viscoelastic material whose rheological
properties can be described by the storage modulus
(G´), which denotes its degree of elasticity, and the
loss modulus (G´´), which provides a measure of
its viscous nature (Guggisberg et al., 2011). The
dependence of G´ and G´´ with frequency for yogurt
variations are shown in Fig. 4. All yogurt variations
exhibited a G´ characterized by showing a slight
increase in gradient with frequency. G´ was always
greater than G´´ over the whole frequency range
studied. This behaviour is typical of entanglement
networks (Peressini et al., 2003). For comparative
purposes G´ and G´´ values were considered at 1 Hz
(Table 3).
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Table 3. Values of the storage (G´) and loss (G´´) moduli of yogurt variations at 1 HzTable 3. Values of the storage (G´) and loss (G´´) moduli of yogurt variations at 1 Hz 

Yogurt code  G´ (Pa) G´´ (Pa) 

FFYsu  112.0 ± 3.7b 28.5 ± 1.8b 

RFYsu  84.8 ± 2.3ª 21.4 ± 1.6ª 

FFYst  360.1 ± 10.0e  84.3 ± 5.8 e 

RFYst  198.7 ± 10.3c 46.4 ± 2.3c 

RFYst1:1  340.7 ± 9.7d 70.8 ± 3.0d 

RFYst1:2  348.9 ± 10.1d 76.0 ± 5.7d 

RFYst1:3  370.2 ± 11.5e 86.4 ± 7.4de 

FFY: full-fat yogurt variations; RFY: reduced-fat yogurt variations. su = sucrose; st = stevia; 1:1, 
1:2 and 1:3 = weight ratios of milk-fat to CC in d.b. a-eDifferent superscripts within the same 
column indicate that mean values differ significantly (p ≤ 0.05). 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 

  
Fig. 1. SEM micrographs of full-fat yogurt with sucrose (a); reduced-fat yogurt with sucrose (b); full-fat yogurt
with stevia (c, e) and reduced-fat yogurt with stevia (d, f). Non-micellar material (nm) in the protein networks of
yogurts containing stevia can be observed.
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Fig. 2 

  

Fig. 2. SEM micrographs of reduced-fat yogurt variations made with stevia in which the complex coacervate was
incorporated in 1:1 (a), 1:2 (b), and 1:3 (c) weight ratios of milk-fat to CC (d.b.). Non-micellar material (nm) in
protein networks of yogurts containing stevia can be observed.

 

 

 

 

 

 

Fig. 3 

  
Fig. 3. SEM micrograph of the whey protein isolate/L.
plantarum/κ-carrageenan complex coacervate.

Variance analysis confirmed that rheological
parameters were significantly affected by stevia and
CC inclusion in yogurt variations. The G´ and G´´
values significantly increased with the addition of
stevia. Basu et al. (2013) reported that partial
substitution of sucrose by stevioside in mango jam
at certain levels led to stronger network due to
hydrophobic interactions, as evidenced by FTIR
spectra. Yogurts incorporating CC exhibited higher
values of G´ and G´´ in comparison with those of
the RFYst. These results seem to indicate probable
interactions between KC and the whey proteins of CC
with casein chains of the yogurt gel structure occurring
via electrostatic and/or hydrophobic attractive forces,
reinforcing the mechanical response of yogurt network
(Baeza et al., 2002). It is well known that protein-
polysaccharide and protein-protein interactions play a
key role in the structuring and mechanical behaviour
in dairy products (Corredig et al., 2011). It has been
reported that the G´ values of gels is related to the
number, strength, or both of bonds between casein
particles and the spatial distribution of strands of
casein in the network (Esteves et al., 2003). Our

results indicate that the addition of stevia and CC

 

Fig. 4 
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Fig. 4. Frequency dependence of the (a) storage
(G´) and (b) loss (G´´) moduli of yogurt variations:
(�) FFYsu; (�) RFYsu; (N) FFYst; (4) RFYst; ()
RFYst1:1; (o) RFYst1:2; and (�) RFYst1:3. FFY:
full-fat yogurt variations; RFY: reduced-fat yogurt
variations. su = sucrose; st = stevia; 1:1, 1:2 and 1:3
= weight ratios of milk-fat to CC (d.b.).

to reduced-fat yogurts contributed to the gels
formation with an increased viscoelastic behaviour,
compared to the controls (FFYsu and RFYsu). There
was a relationship between the microstructure of
yogurt and viscoelastic moduli. Yogurts which
showed a denser structure and lower porosity exhibited
higher G´ and G´´ values.
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Table 4. Viability of Lactobacillus plantarum in yogurt variations during storage
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FFY: full-fat yogurt variations; RFY: reduced-fat yogurt variations; su = sucrose; st = 
stevia; 1:1, 1:2 and 1:3 = weight ratios of milk-fat to CC in d.b. a-dDifferent superscripts 
within the same column indicate that mean values differ significantly (p ≤ 0.05). A-

DDifferent superscripts within the same row indicate that mean values differ 
significantly (p ≤ 0.05). 

  

Yogurt code log cfu g-1 

day 1 day 7 day 14 day 21 
FFYsu 8.25 ± 0.1a,D 7.56 ± 0.1a,C 6.83 ± 0.1a,B 6.53 ± 0.1a,A 

FFYst 8.20 ± 0.1a,D 7.51 ± 0.1a,C 6.80 ± 0.1a,B 6.53 ± 0.1a,A 

RFYsu 8.27 ± 0.2ª,D 7.57 ± 0.1a,C 7.24 ± 0.1b,B 6.57 ± 0.1a,A 

RFYst 8.23 ± 0.2ª,D 7.55 ± 0.1a,C 6.81 ± 0.1a,B 6.53 ± 0.1a,A 

RFYst1:1 8.11 ± 0.2a,A 8.07 ± 0.1b,A 8.09 ± 0.1c,A 8.13 ± 0.1b,A 

RFYst1:2 8.19 ± 0.1a,A 8.14 ± 0.2bc,A 8.26 ± 0.1d,A 8.27 ± 0.1bc,A 

RFYst1:3 8.12 ± 0.1a,A 8.32 ± 0.1c,B 8.34 ± 0.1d,B 8.40 ± 0.1c,B 

3.5 Survival of L. plantarum in yogurt

Initial counts of free and entrapped L. plantarum cells
in all yogurt variations were non-significantly different
(Table 4). However, at the end of the refrigerated
storage time (21 days), entrapped L. plantarum cells
within CC did not suffer loss of viability, while
free cells presented high viability losses (Table 4).
Cell counts of RFYst1:1, RFYst1:2, and RFYst1:3
remained above 108 cfu.g−1, complying with the
recommended minimum numbers of 107 cfu g−1 of
live cells at the time of consumption, to be considered
as probiotic food product (Ferdousi et al., 2013), while
free cells contained in FFYsu, FFYst, RFYsu and
RFYst variations did not. During processing and
storage of foods, probiotic microorganisms can suffer
viability losses.

In the particular case of yogurt, exposition to
high acidity, low pH, high osmotic pressure and high
contents of oxygen, lactic and acetic acids have been
identified as having an effect on probiotics viability
during manufacture and storage of yogurt (Dave and
Shah, 1997; Ayama et al., 2014). Shah and Jelen
(1990) stated that the main factor affecting the survival
of probiotic bacteria in yogurt is the increasing acid
content during fermentation and storage. As can be
seen in Table 2, the acidity of all yogurt variations
increased with storage time. In spite of RFY’s
containing CC exhibited the highest acidity values,
L. plantarum did not show viability losses. In a

previous work it was found that complex coacervate
obtained from the interaction between WP/Lp/KC
provided an adequate protection to L. plantarum cells
when they were exposed to simulated gastric pH of
3.0 (Hernández-Rodrı́guez et al., 2014). It is clearly
seen in Fig. 3 that the Lp cells were immobilized
within CC biopolymer matrix. The CC biopolymer
matrix could afford protection to the cells by slowing
down the diffusion rate of compounds produced
during fermentation and storage of yogurt such as
acids and hydrogen peroxide (Sandoval-Castilla et
al., 2010). Brusch-Brinques and Záchia-Ayub (2011)
found that immobilization of L. plantarum in different
biopolymer matrices increased cells survivability in
yogurt under refrigerated storage. Shoji et al. (2013)
reported that L. acidophilus encapsulated by complex
coacervation and incorporated into buffalo milk yogurt
presented greater stability compared to the yogurt
prepared with the free culture.

3.6 Sensory evaluation

The market acceptance of novel foods is driven by
consumer’s choice, and thus appearance, flavour, taste
and mouthfeel become critically important factors.
Colloidal delivery systems need to be designed in a
way that they improve, or at least do not diminish, the
overall acceptability of the product (Patel and Velikov,
2011). Table 5 shows the sensory evaluation scores of
the yogurt variations.
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Table 5. Mean sensory attributes and overall acceptability scores of yogurt variations
Table 5. Mean sensory attributes and overall acceptability scores of the yogurt variations 

Yogurt 
code 

Aroma Appearance  Creaminess Acidity Granularity Flavour Residual 
flavour 

Overall 
acceptability 

FFYsu 4.1 ± 1.2b 3.9 ± 1.5a 4.0 ± 1.2ab 3.9 ± 1.2b 4.3 ± 1.1b 4.5 ± 0.9b 4.0 ± 1.3b 4.2 ± 1.2b 

FFYst 4.0 ± 1.1b 3.8 ± 1.2a 3.9 ± 1.2ab 3.8 ± 1.2b 4.2 ± 1.1b 4.3 ± 1.0b 4.3 ± 1.0b 4.0 ± 1.1b 

RFYsu 3.7 ± 0.3a 3.6 ± 1.5a 3.3 ± 1.3a 2.9 ± 1.4a 3.4 ± 1.8a 2.1 ± 1.5a 3.9 ± 1.0a 2.4 ± 1.5a 

RFYst 3.6 ± 1.2a  3.7 ± 1.2a 3.3 ± 1.3a 3.3 ± 1.4a 3.5 ± 1.8a 2.3 ± 0.9a 3.7 ± 1.3a 2.3± 1.3a 

RFYst1:1 4.4 ± 1.0b 4.0 ± 1.2a 4.8 ± 0.6c 4.2 ± 1.2b 4.0 ± 1.4ab 4.7 ± 0.7b 4.2 ± 1.2b 4.6 ± 0.8b 

RFYst1:2 4.0 ± 1.3b 4.0 ± 1.4a 4.2 ± 1.1bc 3.8 ± 1.2b 4.2 ± 1.2ab 4.2 ± 1.2b 4.0 ± 1.4b 4.1 ± 1.3b 

RFYst1:3 4.0 ± 1.5b 3.7 ± 1.3a 4.4 ± 1.0bc 4.1 ± 1.4b 3.9 ± 1.5ab 4.4 ± 1.0b 4.0 ± 1.4b 4.3 ± 1.1b 

FFY: full-fat yogurt variations; RFY: reduced-fat yogurt variations; su = sucrose; st = stevia; 1:1, 
1:2 and 1:3 = weight ratios of milk-fat to CC in d.b. a-cDifferent superscripts within the same 
column indicate that mean values differ significantly (p ≤ 0.05). 

  
RFY made with sucrose and stevia exhibited in
general lower sensory attributes scores than their FFY
counterparts, with the exception of appearance. The
partial or total removal of fat from yogurt decreases
the overall quality perceived by the consumer due
to changes in texture and in the retention of flavour
compounds in the product, as also fat has its own
aroma and flavour (Cayot et al., 2008). On the
other hand, the RFY variations made with stevia +

CC showed comparable aroma, acidity, granularity,
flavour, residual flavour, and overall acceptability
sensory scores than the FFYsu. In this manner,
it is assumed that the combination of stevia + CC
displayed milk - fat mimetic functionalities, yielding
reduced milk-fat yogurts with comparable sensory
attributes as those of a full-milk fat yogurt made with
sucrose.

Conclusions

In this work it was demonstrated that the molecular
features and concentration of the added ingredients
(whey protein isolate/L. plantarum/κ-carrageenan
complex coacervate, and stevia) affected significantly
the gel strength (microstructural arrangement and
rheological properties) of the yogurt variations.
The combination of stevia and the complex
coacervate yielded reduced milk-fat yogurts,
whose microstructure was composed by spherical
microparticles aggregates forming an interconnected
matrix, exhibiting higher viscoelastic behaviour and
comparable sensory attributes as those of a full-milk
fat yogurt made with sucrose. SEM micrographs

clearly show that L. plantarum cells were immobilized
within the complex coacervate matrix. Immobilized
probiotic cells survivability was significantly higher
than free cells survivability in yogurt, thus it is
postulated that the complex coacervate matrix afforded
an effective protection to the cells by acting as
a physical barrier against adverse environmental
conditions.
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Castañeda-Ovando, A., Jaimez-Ordaz, J.,
Añorve-Morga, J. and Cruz-Guerrero, A.E.
(2016). Inorganic selenium uptake by
Lactobacillus ssp. Revista Mexicana de
Ingenierı́a Quı́mica 15, 33-38.

Guggisberg, D., Piccinali, P. and Schreier, K.
(2011). Effects of sugar substitution with
Stevia, ActilightT M and Stevia combinations
or PalatinoseT M on rheological and sensory
characteristics of low-fat and whole milk set
yoghurt. International Dairy Journal 21, 636-
644.

Haque, Z.Z. and Aryana, K.J. (2002). Effect of
sweeteners on the microstructure of yogurt.
Food Science and Technology Research 8, 21-
23.

Hernández-Rodrı́guez, L., Lobato-Calleros, C.,
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